Fedex Literature Review Sample Essay

Viscosity of some ?uidsFluid Air ( at Benzene Water ( at 18 ? C ) Olive oil ( at 20 ? C ) Motor oil SAE 50 Honey Ketchup Peanut butter Tar Earth lower mantle 18 ? C ) Viscosity [ cP ] 0.

02638 0. 5 1 84 540 2000–3000 50000–70000 150000–250000 3 ? 1010 3 ? 1025
Table: Viscosity of some ?uidsJosef M?lek a Non-Newtonian ?uids
Viscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyModels with variable viscousnessGeneral signifier: T = ?pI + 2µ ( D. T ) DSecond
( 2. 1 )Particular theoretical accounts chiefly developed by chemical applied scientists.Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyOstwald–de Waele power jurisprudence? Wolfgang Ostwald. Uber die Geschwindigkeitsfunktion der Viskosit?t disperser Systeme. I.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

Colloid Polym. Sci. . 36:99–117.

a 1925 A. de Waele. Viscometry and plastometry. J. Oil Colour Chem.

Assoc. . 6:33–69. 1923 µ ( D ) = µ0 |D|n?1 ( 2. 2 )
Fits experimental informations for: ball point pen ink. liquefied cocoa.

aqueous scattering of polymer latex domainsJosef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyCarreau Carreau–YasudaPierre J. Carreau. Rheologic equations from molecular web theories. J.Rheol. . 16 ( 1 ) :99–127.

1972 Kenji Yasuda. Probe of the analogies between viscosimetric and additive viscoelastic belongingss of polystyrene ?uids. PhD thesis. Massachusetts Institute of Technology. Dept. of Chemical Engineering. . 1979 µ0 ? µ? ( 1 + ? |D|2 ) 2 n n?1 a

µ ( D ) = µ? +( 2.

3 ) ( 2. 4 )µ ( D ) = µ? + ( µ0 ? µ? ) ( 1 + ? |D|a ) Fits experimental informations for: liquefied polystyrene Josef M?lek a Non-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyEyringHenry Eyring. Viscosity. malleability. and di?usion as illustrations of absolute reaction rates. J. Chem.

Phys. . 4 ( 4 ) :283–291. 1936 Francis Ree. Taikyue Ree.

and Henry Eyring. Relaxation theory of conveyance jobs in condensed systems. Ind.

Eng. Chem. .

50 ( 7 ) :1036–1040. 1958 µ ( D ) = µ? + ( µ0 ? µ? ) arcsinh ( ? |D| ) ? |D| arcsinh ( ?1 |D| ) arcsinh ( ?2 |D| ) µ ( D ) = µ0 + µ1 + µ2 ?1 |D| ?2 |D| ( 2. 5 ) ( 2. 6 )
Fits experimental informations for: napalm ( coprecipitated aluminium salts of naphthenic and palmitic acids ; jellied gasolene ) . 1 % nitrocelulose in 99 % butyl ethanoate Josef M?lek a Non-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyCrossMalcolm M. Cross. Rheology of non-newtonian ?uids: A new ?ow equation for pseudoplastic systems. J.

Colloid Sci. . 20 ( 5 ) :417–437. 1965 µ ( D ) = µ? + µ0 ? µ? 1 + ? |D|n ( 2. 7 )Fits experimental informations for: aqueous polyvinyl ethanoate scattering. aqueous limestone suspensionJosef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologySiskoA. W. Sisko.

The ?ow of lubricating lubricating oils. Ind. Eng. Chem. . 50 ( 12 ) :1789–1792. 1958 µ ( D ) = µ? + ? |D|n?1 Fits experimental informations for: lubricating lubricating oils ( 2. 8 )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyBarusC.

Barus. Isotherms. isopiestics and isometrics relative to viscousness. Amer. J. Sci. . 45:87–96.

1893 µ ( T ) = µref e? ( p?pref ) Fits experimental informations for: mineral oils1. organic liquids2 ( 2. 9 )Michael M. Khonsari and E. Richard Booser. Applied Tribology: Bearing Design and Lubrication. John Wiley & A ; Sons Ltd. Chichester.

2nd edition. 2008 2 P. W. Bridgman.

The e?ect of force per unit area on the viscousness of 44 pure liquids. Proc. Am.

Acad. Art. Sci. .

61 ( 3/12 ) :57–99. FEB-NOV 1926 Josef M?lek a Non-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyEllisSeikichi Matsuhisa and R. Byron Bird. Analytical and numerical solutions for laminal ?ow of the non-Newtonian Ellis ?uid. AIChE J. .

11 ( 4 ) :588–595. 1965 µ ( T ) = µ0 1 + ? |T? |n?1 ( 2. 10 )
Fits experimental informations for: 0. 6 % w/w carboxymethyl cellulose ( CMC ) solution in H2O.

poly ( vynil chloride ) 3T. A. Savvas. N. C. Markatos. and C.

D. Papaspyrides. On the ?ow of non-newtonian polymer solutions. Appl. Math. Modelling. 18 ( 1 ) :14–22.

1994 Josef M?lek a Non-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyGlenJ. W. Glen. The weirdo of polycrystalline ice. Proc. R. Soc.

A-Math. Phys. Eng. Sci. .

228 ( 1175 ) :519–538. 1955 µ ( T ) = ? |T? |n?1 Fits experimental informations for: ice ( 2. 11 )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologySeelyGilbert R. Seely. Non-newtonian viscousness of polybutadiene solutions. AIChE J. .

10 ( 1 ) :56–60. 1964 µ ( T ) = µ? + ( µ0 ? µ? ) e ? |T? |?0
( 2. 12 )Fits experimental informations for: polybutadiene solutionsJosef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyBlatterErin C. Pettit and Edwin D.

Waddington. Ice ?ow at low deviatoric emphasis. J.

Glaciol. . 49 ( 166 ) :359–369.

2003 H Blatter. Velocity and stress-?elds in grounded glaciers – a simple algorithm for including deviatoric emphasis gradients. J.

Glaciol. . 41 ( 138 ) :333–344.

1995 µ ( T ) = 2
A |T? | +2 ?0n?1 2

( 2. 13 )Fits experimental informations for: iceJosef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadShear dependent viscousness Models with force per unit area dependent viscousness Models with stress dependent viscousness Models with discontinuous rheologyBingham Herschel–BulkleyC. E. Bingham. Fluidity and malleability. McGraw–Hill. New York. 1922 Winslow H.

Herschel and Ronald Bulkley. Konsistenzmessungen von Gummi-Benzoll?sungen. Colloid Polym. Sci. . 39 ( 4 ) :291–300. O August 1926 |T?| & gt ; ? ? |T? | ? ? ? if and merely if T? = ? ? if and merely if D=0 D + 2µ ( |D| ) D |D|

( 2.

14 )Fits experimental informations for: pigments. toothpaste. Mangifera indica jamSantanu Basu and U. S. Shivhare.

Rheological. textural. micro-structural and centripetal belongingss of Mangifera indica jam. J. Food Eng. . 100 ( 2 ) :357–365.

2010 Josef M?lek a Non-Newtonian ?uids
Viscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadRivlin–Ericksen ?uidsRivlin–EricksenR. S. Rivlin and J. L. Ericksen. Stress-deformation dealingss for isotropic stuffs.

J. Ration. Mech. Anal. .

4:323–425. 1955 R. S.

Rivlin and K. N. Sawyers. Nonlinear continuum mechanics of viscoelastic ?uids. Annu.

Rev. Fluid Mech. . 3:117–146.

1971 General signifier: T = ?pI + degree Fahrenheit ( A1 A2 A3. . .

) ( 3. 1 ) where A1 = 2D dAn?1 + An?1 L + L An?1 An = dt ( 3. 2a ) ( 3. 2b )
vitamin D where dt denotes the usual Lagrangean clip derivative and L is the speed gradient. Josef M?lek a Non-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadRivlin–Ericksen ?uidsCriminale–Ericksen–FilbeyWilliam O. Criminale.

J. L. Ericksen. and G. L. Filbey. Steady shear ?ow of non-Newtonian ?uids. Arch.

Rat. Mech. Anal. . 1:410–417. 1957 T = ?pI + ?1 A1 + ?2 A2 + ?3 A2 1 ( 3. 3 )Fits experimental informations for: polymer thaws ( explains mormal emphasis di?erences )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadRivlin–Ericksen ?uidsReiner–RivlinM.

Reiner. A mathematical theory of dilatancy. Am. J. Math. . 67 ( 3 ) :350–362. 1945 T = ?pI + 2µD + µ1 D2 Fits experimental informations for: N/A ( 3.

4 )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell. Oldroyd. Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkMaxwellJ. Clerk Maxwell. On the dynamical theory of gases. Philos.

Trans. R. Soc. . 157:49–88. 1867
T = ?pI + S S + ?1 S = 2µD diabetes mellitus ? LM ? ML dt Fits experimental informations for: N/A M =def Josef M?lek a Non-Newtonian ?uids( 4. 1a ) ( 4.

1b )( 4. 2 )Viscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell. Oldroyd.

Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkOldroyd-BJ. G. Oldroyd. On the preparation of rheological equations of province. Proc.

R. Soc. A-Math. Phys. Eng. Sci. . 200 ( 1063 ) :523–541.

1950T = ??I + S S + ?S = ?1 A1 + ?2 A1 Fits experimental informations for: N/A( 4. 3a ) ( 4. 3b )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell. Oldroyd.

Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkOldroyd 8-constantsJ. G. Oldroyd. On the preparation of rheological equations of province. Proc. R. Soc. A-Math.

Phys. Eng. Sci. . 200 ( 1063 ) :523–541. 1950 T = ??I + S ?3 ?5 ?6 ( DS + SD ) + ( Tr S ) D + ( S: D ) I 2 2 2 ?7 ( D: D ) I = ?µ D + ?2 D + ?4 D2 + 2 ( 4. 4a )
S + ?1 S +( 4. 4b )Fits experimental informations for: N/AJosef M?lek a Non-Newtonian ?uids
Viscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell.

Oldroyd. Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkWarren burgersJ. M. Burgers. Mechanical considerations – theoretical account systems – phenomenological theories of relaxation and viscousness. In First study on viscousness and malleability.

chapter 1. pages 5–67. Nordemann Publishing. New York.

1939
T = ??I + S S + ?1 S + ?2 S = ?1 A1 + ?2 A1 Fits experimental informations for: N/A( 4. 5a ) ( 4. 5b )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell. Oldroyd. Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkGiesekusH. Giesekus.

A simple constituent equation for polymer ?uids based on the construct of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. . 11 ( 1-2 ) :69–109. 1982
T = ??I + S S + ?S ? ??2 2 S = ?µD µ( 4. 6a ) ( 4.

6b )Fits experimental informations for: N/AJosef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell. Oldroyd. Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkPhan-Thien–TannerN. Phan Thien.

Non-linear web viscoelastic theoretical account. J. Rheol. . 22 ( 3 ) :259–283. 1978 N. Phan Thien and Roger I.

Tanner. A new constituent equation derived from web theory. J. Non-Newton. Fluid Mech. . 2 ( 4 ) :353–365.

1977
T = ??I + S Y S + ?S + ?? ( DS + SD ) = ?µD 2 Y =e Fits experimental informations for: N/A Josef M?lek a Non-Newtonian ?uids( 4. 7a ) ( 4. 7b ) ( 4. 7c )?? ? Tr S µViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell. Oldroyd. Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkJohnson–SegalmanM.

W. Johnson and D. Segalman. A theoretical account for viscoelastic ?uid behaviour which allows non-a?ne distortion. J. Non-Newton.

Fluid Mech. . 2 ( 3 ) :255–270.

1977
T = ?pI + S ( 4. 8a ) S = 2µD + S ( 4. 8b ) S +? darmstadtium + S ( W ? ad ) + ( W ? ad ) S dt = 2?D ( 4. 8c )Fits experimental informations for: jetJosef M?lek a Non-Newtonian ?uids
Viscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadMaxwell.

Oldroyd. Burgers Giesekus Phan-Thien–Tanner Johnson–Segalman Johnson–TevaarwerkJohnson–TevaarwerkK. L. Johnson and J.

L. Tevaarwerk. Shear behavior of elastohydrodynamic oil ?lms. Proc.

R. Soc. A-Math. Phys.

Eng. Sci. .

356 ( 1685 ) :215–236. 1977
T = ?pI + S S S + ? sinh = 2µD s0 Fits experimental informations for: lubricators( 4. 9a ) ( 4. 9b )Josef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts DownloadKaye–Bernstein–Kearsley–ZapasKaye–Bernstein–Kearsley–ZapasB. Bernstein. E. A.

Kearsley. and L. J. Zapas.

A survey of stress relaxation with ?nite strain. Trans. Soc. Rheol.

. 7 ( 1 ) :391–410. 1963 I-Jen Chen and D. C.

Bogue. Time-dependent emphasis in polymer thaws and reappraisal of viscoelastic theory. Trans. Soc. Rheol. . 16 ( 1 ) :59–78. 1972 T
T=?=??
?W ?1 ?W C+ C d? ?I ?II( 5.

1 )Fits experimental informations for: polyisobutylene. cured gum elasticJosef M?lek aNon-Newtonian ?uidsViscosity of some ?uids Models with variable viscousness Di?erential type theoretical accounts Rate type theoretical accounts Integral type theoretical accounts Downloadrotter ringer [ electronic mail protected ]: non-newtonian-models git ringer [ electronic mail protected ]: bibliography-and-macrosJosef M?lek aNon-Newtonian ?uids

x

Hi!
I'm Sarah!

Would you like to get a custom essay? How about receiving a customized one?

Check it out